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1 Linear Regression

1.1 Linear Regression - Introductory Remarks

We saw in the previous chapter that the value of correlation coefficient increased in a non-linear manner
with the coefficient relating variables X and Y. But what if the dependent variable was a function of more
than just one variable? Total discount might be primarily driven by the sales volume, but customer’s
purchasing potential affects the discount as well. And what if a unit-change in price was met with a
more than proportionate decrease of the willingness-to-buy? Correlation coefficient is defined on the
(−1, 1) interval, and therefore could not fully capture this response. Another what-if scenario assumes
the explanatory variable to be equal to 0. Many B2B producers grant their clients standard discounts
depending on channel and customer classification. Discount is granted before the customer starts the
bargain, which in other words means that even a zero-valued demand is rewarded. Some producers define
only an upper limit for standard discount. The decision on exactly what percentage should be granted is
left to the sales representatives. The standard discount varies, and therefore needs to be recovered from the
sales data. Again, correlation coefficient would be of very limited use. The procedures helping to recover
the coefficients describing the discounting function is called regression. There are many algorithms used
to estimate the coefficients, there are many types of explaining variables used to approximate the objective
function, and also there are many probability distributions employed in order to estimate the coefficients.
In this chapter we introduce the linear regression based on the ordinary least squares (OLS).

1.2 Estimated Coefficients

Perhaps the most important reason for running a regression
is the estimation of the marginal effects. What is a marginal effect?
A marginal effect is a magnitude of response in dependent variable Marginal Effect: magnitude of response

of the explaining variable to changes in
explanatory variable.

to a change in explanatory one. Business problems refer to quan-
tified relationships between variables. Total discount is a function
of ordered quantities, but how much would discount increase if a
customer decided to buy 1 000 pieces of equipment more than pre-
viously. A price of used car is a function of millage, but wow much
will the price decrease if the mileage increased by 1 000 miles? To
solve problems like these an analyst performs regression and calcu-
lates the marginal effects.

OLS regression refers to a rare case in which the relationship be-
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tween variables is linear. For the linear regression the calculations
simplify considerably. Marginal effect is calculated as the first deriva-
tive of the estimated function with respect to specified explanatory
variables. For instance, if total discount is a function of quantities
ordered and customer classification, the marginal effect for quanti-
ties ordered will be identical to differentiating the discount function
with respect to quantities sold. This operation reduces to estimating
the quantities coefficient, because we assumed a linear form of the
discount function. Technically speaking, the discount function is:

D = α0 + α1Q + α2CC + εD, (1.1)

and the result of differentiating is:

∂

∂Q
D = α1. (1.2)

Eq. (1.2) shows that if the quantities increase by one unit, the dis-
count changes by α1.

Notice, however, that units may be defined in various manners.
If a product is sold in tens of thousands units, one does not simply
expect a change by one unit to have a large impact on the discount
granted. In the B2B world producers sell in both units and in boxes
(of, say, 100 units) to reward the stockists and to reduce the logistic
cost. A box, although not belonging to standard measures, may be
used as one unit.

Example 1.2.1. — OLS Estimates and Factor Influencing Prices. Dr.
Plama, an evil genius to whom ‘money is the only Esperanto’, does not mix
up emotions with business. His favourite car, however, reminds him of his
early days at the Heidelberg University, hence making him emotional. As
the years go by, the car loses its value, and Dr. Plama realises that further
hesitation can be very costly. How much would he lose if he postponed the
decision of selling the car by another year? How much would Dr. Plama lose
if he drove another 10 000 kilometers?

Being an evil genius, Dr. Plama scrapes the leading Polish on-line
auction websites to gather the data and analyses the data. The OLS
estimates revealed that the age coefficient was equal to -10 011, and Age has been calculated subtracting the

year of build from 2017. The millage
was re-calculated by dividing the actual
millage by 10 000.

the millage parameter was equal to -1 357. Therefore, Dr. Plama
will lose about PLN 1 350 if he drives another 10 000 kilometers, or
slightly more than PLN 10 000 if he hesitates another year.

Another important insight gained from regression offers elas-
ticity analysis. Recall that price elasticity of demand is calculated as
price divided by quantities sold and multiplied by the first derivative
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of the demand function, or more formally:

π =
p
q
× ∂F (d)

∂p
. (1.3)

Again, for the linear regression the calculations simplify considerably.
No matter how many arguments the demand function has, its first
derivative with respect to price will be equal to the estimated price
coefficient.

Example 1.2.2. — OLS Estimates and Price Elasticity. Wernham
Hogg Co. decided to gradually decrease the price of opti-bright laser copy pa-
per from £298 to £240. After reaching the £240 level, the board of Wernham
Hogg Co. requested a report describing the consequences of the cut in price,
with special emphasis drawn to response of demand.

The Data Support Deprtment at Wernham Hogg performed OLS
estimations summarised in the table.

Coefficient OLS Estimate Std. Error p-value

intercept 203.732 18.085 0.000

slope -0.497 0.067 0.000

Figure 1.1: Wernham Hogg Co and
Price elasticity. The black dots show
transactions (combinations of prices
and quantities), red line is the OLS
line, and the green curve presents the
elasticity estimated for price range
(£298 to £240). The dashed lines show
the elasticity at average price (−1.886).

To elucidate the relationship between changes in demand and
prices, the Data Support Department calculated the price elasticity
of demand. Since the relationship between quantities and price was
linear, the first derivative was equal to the estimated price coefficient
in the demand function. Substituting the averages for price and
quantities, the Data Support Department obtained the average price
elasticity equal to 268/70.67× (−0.497) = −1.886. It meant that, on
average, a reduction of price by one £1 would result in an increase of
quantities sold by 1.9.

Additionally, an elasticity curve has been drawn to depict the
inverse relationship between price elasticity and the prices; we expect
the elasticity for the initial price to be much larger (in absolute terms)
than for the final, reduced priced. Figure 1.1 summarises the price
elasticity analysis.

A log-linearasation requires a special comment. In pre- Log-linearisation: a transformation
of an initially non-linear function to
a linear one by taking the (natural)
logarithms from both sides of the
equation

vious examples we assumed that the relationship between prices
and quantities was linear. As tempting as it was, sometimes the lin-
ear models fitted to the data do not perform particularly well. One
way to overcome this obstacle is to take (natural) logarithms from
both sides of the estimated equation and to run OLS for the trans-
formed variables. A general form of the price-quants relationship is
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non-linear and takes the following form:

Q = a0Pa1 . (1.4)

Taking logarithms from both sides of (1.4), one obtains:

q = a0 + a1 p, (1.5)

where q = ln Q and p = ln P. Log-linearisation usually helps to
improve the model’s fit when the variables take large values (e.g.
if we deal with thousands of sold items), but more importantly,
it simplifies the calculations of elasticity. The coefficients in (1.4)
and (1.5) are identical, therefore once the coefficients of (1.5) are
estimated, we can use them to re-write both equations. Recall again
equation (1.3), but this time use the first derivative of the demand
function (1.4):

∂ (a0 pa1)
∂p

= a1a0 pa1−1, (1.6)

which leads to:

π =
p× a1a0 pa1−1

a0 pa1
=

a1a0 pa1

a0 pa1
= a1. (1.7)

Therefore, if a log-liearised function is employed, the OLS coefficients
become automatically the elasticities. Moreover, the elasticity is
constant, which means it does not change along with the changes in
prices.

Regression analysis also helps to optimise. Imagine a cloud
of points depicting all observed combinations of two variables. The
OLS line would be drawn in a fashion minimising the distance to OLS = oridnary LEAST squares.

the these points. It might be therefore employed to find the opti-
mum value of the explaining variable given a specific value of the
explanatory variable.

Example 1.2.3. — OLS Estimates and the Optimum Price. After
concluding business with the Maharajah of Kabur, Dr. Plama has finally
decided to sell his car. With the millage and age equal to 66 600 km and 3
years, respectively, what price should Dr. Plama set for his car?

Dr. Plama employed the OLS estimates to simulate the optimum
price:

P = 173872.8− 10011.75× A− 1357.895× M. (1.8)

Substituting 3 and 6.66 for A and M, Dr. Plama priced his car at PLN
134 794.

Dr. Plama used the point estimates to obtain the expected value
of price under two conditions: millage and age. More specifically, Recall the definition of conditional

expected value from Chapter X.XX.
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he used equation (1.8) to approximate the conditional distribution of
price, and with the given values of M = 6.66 and A = 3, estimated
the expected, or most probable, price.

Figure 1.2: Actual Prices and the OLS
Line.
The red dotes represent the OLS-
predicted price. Black dots depict the
actual combination of price and millage.

What Dr. Plama has simulated for specific values of A and M
could be done for the entire range of explanatory variables. Fig-
ure 1.2 presents athe actual and predicted prices. Some prices are
very close to the fitted line, others are not. Take for instance the
cars priced above the PLN 180 000 level. The vehicles are clearly
overpriced, but we cannot judge the decision simply by reviewing
the distance between the ideal price line and the actual price. Many
factors might have influenced the seller’s decision, and we cannot
evaluate the pricing decision without acquiring the missing informa-
tion. Bear in mind that data science, econometrics, or statistics can
only bring you as far as the data allow to. Bear that in mind espe-
cially if you do not plan (or wish) to be directly involved in any sort
of data analysis - it will certainly restrain you from asking questions
for which there would be no answers.

1.3 Residuals

Let us take a closer look at the case of the vastly overpriced vehicles.
According to the model, the sellers should have asked for PLN 161

063 and 161 742 . Instead, the prices were set at PLN 189 900 and 184 Optimum prices calculated for age = 1

and millage = 1.5601 and 2.06
900. The distance between the actual price and the expected price is
called a residual. The residuals capture the behaviour of dependent
variable not explained by the model:

εi = Pi − P̂i, (1.9)

where P̂ is the expected price conditional to age and millage, as it
is in (1.8). The term subtracted from the actual price is the forecast
based on the OLS model, which produced the expected prices PLN
161 063 and PLN 161 742.

If the model is properly specified, the residuals should have nor-
mal distribution with a zero-mean value and a finite variance. Why a
zero-mean value? Recall first that the mean value is also the expected
value. Now assume for a moment that an estimated model is char-
acterised by a potive-valued residuals. It means that an error term
(i.e. the residuals) is on average greater than 0, which in turns means
that the modeller has repeatedly committed an error. Moreover, the
modeller expected that on average the expected values will deviate
from the actual values by some positive distance. Going back to Dr.
Plama’s dilemma, it would mean that Dr. Plama knew he was going
to obtain an ‘optimum’ price set above the actual, unbiased optimum
price. If he did so, he would only be evil, with no genius whatsoever.
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1.3.1 Estimation

The linear algebra required for estimating the OLS coefficients is
not complicated. Three basic operations are needed: transposition,
inversion, and multiplication. Let’s re-write the price equation (1.8):

P = α0 + α1 A + α2M + ε.

1.4 Significance and Standard Errors

When a business phenomenon is illustrated by descriptive statistics,
an average is usually reported alongside the standard deviation. We
want to know what is the average net price, discount granted, or cost,
but we also want to know their spread. In the OLS terms, estimated
coefficients are used to approximate the average. OLS equivalent of OLS coefficients and the expected value

standard deviation is the standard error. A standard routine in sta-
tistical inference is to relate the average to standard deviation. If an
average price per transaction is equal to £25, and it deviates by £2.5,
pricing conditions are considered stable. If the standard deviation
approaches average, stability can no longer be claimed. Similar infer-
ence can be performed for the estimated coefficients. Moreover, it is
much more precise and has well established statistical background. It
does not necessarily mean, however, that no controversy surrounds
not only the procedure, but also the entire concept.

The concept mentioned above is called testing for significance.
The test statistic is obtained by dividing the estimated coefficient by The test statistic is Student-t distributed

with the number of degrees of freedom
equal to sample size - number of
estimated coefficients

its standard error. Statistical softwares report all elements required
to determine whether or not a coefficient is statistically significant.
More technically, to determine whether or not the null hypothesis of
insignificance is rejected. Bear in mind that every time significance
is mentioned, the null hypothesis actually states the opposite. If
the p-value is small, the null of insignificance is rejected, and so the
coefficient is statistically significant.

Example 1.4.1. — Individual Significance. Sir George Head, OBE,
applied for a financial grant to build a bridge between two picks of Mt.
Kilimanjaro. His personal assistant, Mr. James Blenkinsop, estimated the
impact of various factors on the length of time necessary to finish the works.
As pointed out by Mr. Arthur Wilson, the necessity of hiring fully qualified
mountaineers might be the leading factors. Based on the experience gathered
from the last year’s expedition, Sir George questioned the importance of
qualified staff. According to Mr. Blenkinsop’s estimations covering a sample
of 56 similar expeditions and 4 explanatory variables, the qualified-staff-
coefficient was 3.22 with a standard error equal to 1.276. Were Mr. Wilson’s
remarks in order?
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Mr. Blenkinson reported the estimation results. For 52 degrees of
freedom and the test value of 56 expeditions and 4 estimated coeffi-

cients = 52 degrees of freedom.
3.22
1.276

= 2.524 (1.10)

the p-value was 0.015. The test carried out by Mr. Blenkinson had
the null hypothesis specified as qualified-staff-coefficient is insignificant.
After reviewing the p-value, Mr. Blenkinson rejected the null and
proved Sir George wrong (at 1.5% signficance level). Even if right, Mr.
Wilson shan’t be coming on the expedition, because he’s absolutely
no confidence in anyone involved in it.

Most textbooks present clear-cut cases with coefficients either
highly significant or highly insignificant. The celebrated rule of
thumb for significance level, however, cannot be automatically ap- Recall again 1%, 5%, and 10% signifi-

cance level.plied to business or economic problems. Boarder-line (in)significance
is very likely to be discovered once the results are inspected. Need-
less to say, the term boarder-line is not stricktly defined. As the re-
searchers and analysts are in charge of deciding where the rejection
region starts, they also carry the responsibility for their decisions.
You should always recall the latter remark every time somebody is
refering to statistics in the words of Mark Twain (1907). Figures often beguile me, particularly when

I have the arranging of them myself; in
which case the remark attributed to Disraeli
would often apply with justice and force:
‘There are three kinds of lies: lies, damned
lies, and statistics’.

Boarder-line insignificance of individual coefficient may yet not
jeopardise the entire model. It is possible to test a hypothesis the
estimated are jointly significant. The procedure, often called an
overall F-test, has a null hypothesis of the following form:

H0 : α0 = α1 = . . . = αk = 0, (1.11)

which simply reads: all coefficients are jointly equal to 0. Again,
checking coefficients’ significance we actually test for their insignifi-
cance, which means that a small p-value would be in favour of joint
significance.

Example 1.4.2. — Individual vs. Joint Significance. After discussing
the quality of the rooms with Mrs Alice Richards, Basil Fawlty, the owner
of the Fawlty Towers Hotel in Torquay, considers a temporary reduction of
prices by 60%. To simulate the possible response of demand, Mr. Fawlty
regresses the demand variable against the monthly ratio of satisfied-to-
dissatisfied guests, number of guests from Germany (per month), the fre-
quency of gourmet nights hoosted at the hotel(per month), and obviously
the price. The first explanatory variable turns out to be insignificant at 15%
significance level, whilst the other are found significant. Should Mr. Fawlty
exclude the variable of questionable significance from the model?

Further estimations revealed that the p-value for the overall F-
test was equal to 0.024. As the null of joint insignificance has been
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rejected, Mr. Fawlty decided to use the original model to evaluate the
response of demand to a reduction in price.

Regardless the controversy on systematic mistake of economic and
statistical significance (Hoover-Siegler vs. Ziliak-McCloskey), even Statistical significance at the 5% or other

arbitrary level is neither necessary nor suf-
ficient for proving discovery of a scientific
or commercially relevant result, Stephen T.
Ziliak and Deirdre N. McCloskey (2009).
Economic and statistical significance are
different, but we do not believe that there
is any convincing evidence that economists
systematically mistake the two, Kevin D.
Hoover and Mark V. Siegler (2008).

statistically insignificant coefficients might be important for business
analysis. Previous remarks on hypotheses testing, significance level,
and p-value are obviously also valid for significance testing.

[With more remarks and text yet to come]

Standard errors can also be utilised in order to replace

Point-estimates vs. most probable
intervals

point-estimate-based simulations and forecasts with most probable
intervals. Previously we saw that the optimum price for Dr. Plama’s
car was equal to PLN 134 794. Using the estimated standard errors
we can now present the interval in which the bid price should fall.
The standard errors are presented in Table 1.4.

Coefficient OLS Estimate Std. Error p-value

intercept 173 872.8 3 010.9 0.000

age -10 011.7 840.4 0.000

millage -1 357.9 272.0 0.000

An interval is obtained by increasing and then decreasing the co-
efficient values by the values of estimated standard errors. Equation
(1.8) takes now the following form:

P = (173872.8± 3010.9)− (10011.75± 840.4)×A− (1357.895± 272)×M.
(1.12)

The interval in which the price of Dr. Plama’s car should fall is PLN
127 450.4 - 142 137.6.

I am convinced that a successful pricing manager would be
equally interested in point-estimates as well as in most probable
intervals for the simulated price. The former is very precise, but the
latter leaves plenty of rooms for maneuvers and necessary adjust-
ments.

Example 1.4.3. — Standard Errors and Clustering. The Data Depart-
ment at Cartwright Soap revises its customers classification and regresses
the quantities per order against the customer’s purchasing potential, . An
important business partner, Union Jack Rubber Co.,

1.5 Goodness-of-Fit

Once the coefficients are estimated and they have turned out to
be statistically significant, or at least they have met the assumed
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criteria for significance, a new set of problems arises. The problems
are best summarised by the question: How well does your model
fit the data? Precision, as it is in sport, experimental physics, and
many other aspects of life, is a virtue no modeller would sacrifice.
A forecast based on a model of questionable precision may result
in questionable results. We have already seen that precision can be
measured. Recall the distance between the forecasted and actual
prices in Figure 1.2. Intuition prompts that the smaller the distance,
the better the fit. Indeed, the distance is a very important indicative
of a goodness-of-fit.

The most popular measure of the goodness-of-fit is the multiple
coefficient of determination, more commonly known as R2 . Coef- R2 pronounced ‘r squared‘. Please note

that in the bi-variate case, the R2 is
simply equal to the squared correlation
coefficient (hence its name).

ficient of determination measures the variability of the dependent
variable explained by the model. More technically, to estimate the
coefficient we need to calculate two sums of squared deviations: from
actual average ŷ, and from the expected value ȳ:

R2 = 1− ∑T
i=1 (y− ŷ)

∑T
i=1 (y− ȳ)

. (1.13)

You have probably noticed that the numerator in (1.13) is the
sum of squared residuals, similar to the term appearing in (1.9). In
other words, R2 relates the variability of the dependent variable
to the variability of residuals. Consider again equation (1.8). The
denominator is obtained by subtracting the actual prices from the
average price, squaring the differences, and summing them up.
Similarly, the nominator is the sum of squared distances between
observed price and the OLS line. Had the model emulated perfectly
the behaviour of prices, the expected values would have become
equal the actual values. If that was true, there would be only zero-
valued residuals, and the fraction in (1.8) would be 0. Therefore, the
closer the fitted (expected, estimated) prices to the actual prices, the
better the fit, and the closer to 1 is the R2.

The R2 for equation (1.8) is equal to 0.897. Is it large? Yes, it is.
The model fits the data reasonably well. What else do we know
after inspecting the R2 of Dr. Plama’s model? Cars’ age and millage
explains 89.7% of price variability. The remaning 10.3% is accounted
for unknown factors, not included to the model. But is a large value
of R2 a necessary condition for a model to be helpful?

Example 1.5.1. — Discount Policy Evaluation. According to the official
Wernham Hogg Co. pricing guidelines, the discounting decision should
be driven by two factors: purchasing potential of customer and size of
current purchase. An estimated model revealed that both coefficients were
statistically significant, and the R2 was equal to 0.224.
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A poor fit offers a valuable insight into the discounting habits of
Wernham Hogg’s sales representatives. The factors mentioned in
the official guidelines accounted only for 22.4% of the variability of
discounts. Clearly, it suggests that both purchasing potential and size
of purchase have significantly influenced the sales reps decisions,
there must have been other factors influencing their decisions.

If too many regressors are added to the model the fit is Adjusted R-squared

usually artificially improved. In order to penalise for the excessive
number of explanatory variables, an adjusted R squared, denoted
as R̄2, is calculated. The penalising factor is a combination of the
number of regressors, k, and the sample size T:

R̄2 = R2 − k− 1
T − k

(
1− R2

)
. (1.14)

Along with the increasing number of explanatory variables, the
penalty factor increases. Not surprisingly, the penalty for the price
equation (1.8) is small, as the R̄2 is equal to 0.895. After all, there
were only three coefficients to estimate, whilst the sample size was
72. In some more fragile cases, however, adjusted R-squared becomes
crucial, and the value of R̄2 might even be negative.

Residuals are also used to estimate the logarithm of likelihood. Logarithm of likelihood

This measure too puts a great emphasis on the distance between
predicted and actual value of the dependent variable:

L = −T
2

(1 + ln 2π)− T
2

ln
∑T

i=1 ε2
i

T
. (1.15)

where the εs are the residuals.
Unlike the R2, the logarithm of likelihood, or log-likelihood for

short, is not defined over a specified interval. On a more general
notion, a large and positive value of log-likelihood is an indicative
of a good fit. Neither large nor small, however, has not been precisely
defined.

When focusing on how good the model fits the data, one should
inspect both log-likelihood and the R2, as the results might sharply
contrast. The log-likelihood for the model estimated by Dr. Plama
was large, but negative: -769.852, a value that is indeed in a sharp
contrast to R2 = 0.897. The discrepancy depicts the fact that log-
likelihood puts even larger emphasis on the (squared) size of the
residuals than the R2 does. The R2 relates the variability of residuals
to the variability of dependent variable; if both residuals and the
dependent variable are due to large fluctuations, as it was in the
case of Dr. Plama’s model, then the R2 would not capture it. Log-
likelihood, however, would and it did. A simple remedy in case of a
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linear model is to take logarithms from both sides of the estimated
equation. The size of the residuals will be reduced, and so will be
their variability. A re-estimated model for the log-linearised variables
produced R2 = 0.839 and log-likelihood = 48.787.

1.6 Diagnostics
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